3.8.9 \(\int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx\) [709]

Optimal. Leaf size=156 \[ \frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a b^2 \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*b^2*(b+a*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(3/2)+8/5*a*b^2*sin(d*x+c)/d/sec(d*x+c)^(1/2)+6/5*b*(5*a^2+b^
2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(
d*x+c)^(1/2)/d+2*a*(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1
/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3317, 3926, 4132, 3856, 2719, 4130, 2720} \begin {gather*} \frac {2 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b^2 \sin (c+d x) (a \sec (c+d x)+b)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a b^2 \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]],x]

[Out]

(6*b*(5*a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*(a^2 + b^2)*S
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a*b^2*Sin[c + d*x])/(5*d*Sqrt[Sec[c + d
*x]]) + (2*b^2*(b + a*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3926

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^3 \sqrt {\sec (c+d x)} \, dx &=\int \frac {(b+a \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {6 a b^2+\frac {3}{2} b \left (5 a^2+b^2\right ) \sec (c+d x)+\frac {1}{2} a \left (5 a^2+b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {6 a b^2+\frac {1}{2} a \left (5 a^2+b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{5} \left (3 b \left (5 a^2+b^2\right )\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {8 a b^2 \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\left (a \left (a^2+b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (3 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {8 a b^2 \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\left (a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a b^2 \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 b^2 (b+a \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.47, size = 106, normalized size = 0.68 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (6 b \left (5 a^2+b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 a \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+b^2 (5 a+b \cos (c+d x)) \sin (2 (c+d x))\right )}{5 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^3*Sqrt[Sec[c + d*x]],x]

[Out]

(Sqrt[Sec[c + d*x]]*(6*b*(5*a^2 + b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 10*a*(a^2 + b^2)*Sqrt[Co
s[c + d*x]]*EllipticF[(c + d*x)/2, 2] + b^2*(5*a + b*Cos[c + d*x])*Sin[2*(c + d*x)]))/(5*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(411\) vs. \(2(190)=380\).
time = 0.27, size = 412, normalized size = 2.64

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+20 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-10 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+5 a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(412\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b^3+2
0*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a*b^2+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^3-10*cos(1/2*d*x+1
/2*c)*sin(1/2*d*x+1/2*c)^2*a*b^2-2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b^3+5*a^3*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+5*b^2*a*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 193, normalized size = 1.24 \begin {gather*} -\frac {5 \, \sqrt {2} {\left (i \, a^{3} + i \, a b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, a^{3} - i \, a b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (-5 i \, a^{2} b - i \, b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (5 i \, a^{2} b + i \, b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (b^{3} \cos \left (d x + c\right )^{2} + 5 \, a b^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{5 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/5*(5*sqrt(2)*(I*a^3 + I*a*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-I*a^
3 - I*a*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*sqrt(2)*(-5*I*a^2*b - I*b^3)*weiers
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*sqrt(2)*(5*I*a^2*b + I*b^3)*we
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(b^3*cos(d*x + c)^2 + 5*a*
b^2*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \cos {\left (c + d x \right )}\right )^{3} \sqrt {\sec {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**3*sec(d*x+c)**(1/2),x)

[Out]

Integral((a + b*cos(c + d*x))**3*sqrt(sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^3*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^3*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^3 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3,x)

[Out]

int((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^3, x)

________________________________________________________________________________________